ITI 1120
Lab #9

Slides by: Diana Inkpen, Alan Williams,
Daniel Amyot

Some original material by Romelia Plesa

Objectives

» Review fundamental concepts
+ Example: the Time class
+ Exercises

- Modify the Time class
- The Car class

Some Concepts

- Classes

- A class contains variables and methods (code)

- Think of a class as a type of complex variable that
provides a template to create objects.

- The object contains complex data (many variables of
different types) and the possible operations on these
variables (the methods).

+ Reference to an object

- The reference variable contains the reference (an
address) to an object. The following is a declaration
of a reference variable.

ClassName refVariableName;

- Recall that after a reference variable is declared, it
contains a null value (does not reference an object).

Some Concepts (continued)

» Creating an object
- Anobject MUST BE created to be used:

refVariableName = new ClassName(arg list);

- The method after new is the class constructor - its
function is to initialise any variables of the new
object.

- Instance variables: variables defined in the class and
created within the object.

- Instance methods: the code that offers operations

with the object variables.
4

A "Time" class

Suppose we want to be able to work with values
representing clock times to 1 minute precision.

- What information to we have to store to represent
a fime? How do we store that information?

- What operations might we want to do with a Time
value?

What to store in "Time"?

- Two integers:

— hour: the hour humber (O < hour < 23)
- minute: the minute number (O <minute <59)

class Time

{

public int hour;
public int minute;

}

- Alternatives?

- Only minutes or seconds from midnight!

Declaring and creating Time objects

// DECLARE VARIABLES / DATA DICTIONARY
Time timel; // time is null here

// ALGORITHM BODY

timel = new Time(); // We now have a Time object

// but it contains ? for values
timel .hour = 17;

timel.minute = 45; // timel now represents 17:45

What do we have?

timel O\

hour

minute

17

45

A method to set the time

class Time

{

public int hour;
public int minute;

public voi int m)

{

this.hour

this.minute = m;

Usage

// DECLARE VARIABLES / DATA DICTIONARY
Time timel; // time is null here

// ALGORITHM BODY

timel = new Time() ;
timel.setTime(17, 45);

// timel now represents 17:45

10

This method is different!
Did anyone see what was "missing” from the method:

public void setTime(int h, int m)

{
this.hour = h;

this.minute = m;

* The word static does hot appear in the method

header.

11

Instance methods

* When the word static does not appear in the
method header, this means that the method can be
called via a variable declared to be of a type matching
the class name. This is called an "instance” method.

- An instance method can make use of the variables

defined in the class.

* The result: the method will produce different
results for different object instances.

12

Instance methods

* For example,

Time timel;

Time time2;

timel = new Time() ;

time2 = new Time()

timel.setTime(17, 45); //timelis 17:45
time2.setTime(14, 30); // time2is 14:30

13

timel

time?2

What do we have?

AN

AN

hour 17
minute 45
hour 14
minute 30

14

this

+ Objects timel and time2 use the same code
in class Time to set their own copy of hour
and minute.

* When we want to refer to "the object on
which I was called”, we use this.

15

timel.setTime(17,

this

timel

45) ;
hour 17
minute 45
this ()*’//
hour 14
minute 30

16

Information Hiding

If we want to ensure that:
— hour: must be in range O < hour <23
- minute! must be in range O < minute <59
then direct access to these variables should not be permitted.

class Time

{

private int hour;

private int minute;

Instead, access should be provided through setTime, and we
can adjust the values if needed.

17

Revised version of setTime

public void setTime(int h, int m)

{

// If minutes value is too large, adjust it
// by mod 60, and add to hours value.

if (m > 59)

h=h+m/ 60;
m=m $ 60;

}

else

; // do nothing

this.hour = h % 24;

this.minute m;

// determine hours to add
// puts minutes in range

// puts hours in range

18

Accessors

With the variables now declared to be private, we
need to provide a way for other classes to ask for the
values.

public int getHours ()
{

return hour;

}
public int getMinute()

{

return minute;

19

Compare times for equality

Suppose we want a method that checks whether one
time object is equal to another.

One approach: a static method

public static boolean isEqual(Time t1l, Time t2)
This would be called as Time.isEqual(t1, t2)

Alternative: an instance method
public boolean isEqual(Time t2)

This would be called as t1.isEqual(t2)

20

The static method

public static boolean isEqual(Time tl1l, Time t2)

{
return (tl.hour == t2.hour) &&

(tl.minute == t2.minute) ;

- If the method is inside the class Time, it can access
the private variables inside the class.

* Why are there 2 parameters in the above case?

21

The instance method

public boolean isEqual(Time t2)
{

return (this.hour == t2.hour) &&

(this.minute == t2.minute) ;

* In this case, we are comparing “ourself” to another
Time value.

+ Why is only one parameter sufficient in this case?

22

Exercise 1
Add the following methods to the Time class:

public boolean isBefore(Time t2)

Returns true if the time represented by this is before the
time in t2, and false otherwise

public Time duration(Time t2)

Returns a new Time object with the number of hours and
minutes between this and t2.

Write amain method in the class TestTime to test your new
methods (or create JUnit tests).

If you have time, add a display method:
public String toString()

which allows the display of the Time object according to the
format hour:minute in a print/println (for example
System.out.println(timel);)

23

A "Line" class

Design a Java class Line that will store information

for a line, where the line is in an (x,y) coordinate
space, and provide operations to work with lines.

Each line object starts at a point (xStart, yStart) and
ends at a point (XEnd, yEnd), where xStart, yStart , xEnd,
and yEnd are real-valued numbers that could be
positive or negative.

y (XxEnd, yEnd)

Start, yStart
(xStart, yStart) o

UML diagram for Line

Line

xStart @ double
xEnd : double
watart : double
wEnd : double

setPoint=s: double xe: double,ys: double ye: double) : waid
length): double

translatelt<: double ty: double) : woid

slopel) : double

toString) @ String

25

Method descriptions

Set the start and end points of the line.
- Name of method: setPoints (.. .)
* Parameters to the method: xs, ys, xe, ye
* Results: (nhone)
* Modified: the line object

Return the length of the line
- The length is \/U,E —) +(x, - x,)°

* Name of method: length ()
* Parameters to the method: none.
» Result: length of the line (a real value)

26

Method descriptions

* Translate the line by (tx, ty), where tx and ty are any
positive or negative real values.

- A fransi/ation of aline represents "sliding" the
entire line. The value tx is added to the x
coordinates of the start and end of the line, and
the value ty is added to the y coordinates of the
start and end of the line.

- Name of method: translate(...)
* Parameters to the method: tx, ty
» Results: (hone)

* Modified: the line object

27

Method descriptions

* Return the slope of the line.

- The slope is (ye —ys) / (xe — xs) (watch out for
vertical lines - their slope is infinitel)

- Name of method: slope()
* Parameters to the method: none.
» Result: the slope of the line (a real value)

28

Method descriptions

- Returns a string with information about the line.

- The string that is returned for a line with (for
example) start point (0.0,1.0) and end point (3.5,-
1.2) should be:

Line from (0.0, 1.0) to (3.5, -1.2)

- Formatting of the values to a specific number of
decimal places is not required.

- Name of method: toString ()

* Parameters to the method: (nhone)
» Results: a string in the above format

29

Exercise

* Implement the class Line
- implement the toString method

- add a printLineInfo method

+ Test the class using the main method in
LineTest. java

30

