
ITI 1120
Lab #9

Slides by: Diana Inkpen, Alan Williams,
Daniel Amyot

Some original material by Romelia Plesa

1

Objectives

• Review fundamental concepts

• Example: the Time class

• Exercises

– Modify the Time class

– The Car class

2

Some Concepts
• Classes

– A class contains variables and methods (code)

– Think of a class as a type of complex variable that
provides a template to create objects.

– The object contains complex data (many variables of
different types) and the possible operations on these
variables (the methods).

• Reference to an object

– The reference variable contains the reference (an
address) to an object. The following is a declaration
of a reference variable.

ClassName refVariableName;

– Recall that after a reference variable is declared, it
contains a null value (does not reference an object). 3

Some Concepts (continued)

• Creating an object

– An object MUST BE created to be used:

refVariableName = new ClassName(arg list);

– The method after new is the class constructor – its
function is to initialise any variables of the new
object.

– Instance variables: variables defined in the class and
created within the object.

– Instance methods: the code that offers operations
with the object variables.

4

A “Time” class

• Suppose we want to be able to work with values
representing clock times to 1 minute precision.

– What information to we have to store to represent
a time? How do we store that information?

– What operations might we want to do with a Time
value?

5

What to store in “Time”?

• Two integers:
– hour: the hour number (0  hour  23)
– minute: the minute number (0  minute  59)

class Time

{

 public int hour;

 public int minute;

}

• Alternatives?
– Only minutes or seconds from midnight!

6

Declaring and creating Time objects

// DECLARE VARIABLES / DATA DICTIONARY

Time time1; // time is null here

…

// ALGORITHM BODY

…

time1 = new Time(); // We now have a Time object

 // but it contains ? for values

time1.hour = 17;

time1.minute = 45; // time1 now represents 17:45

7

What do we have?

time1
17

45

hour

minute

8

A method to set the time

class Time

{

 public int hour;

 public int minute;

 public void setTime(int h, int m)

 {

 this.hour = h;

 this.minute = m;

 }

}

 9

Usage

// DECLARE VARIABLES / DATA DICTIONARY

Time time1; // time is null here

…

// ALGORITHM BODY

…

time1 = new Time();

time1.setTime(17, 45);

// time1 now represents 17:45

10

This method is different!

• Did anyone see what was “missing” from the method:

public void setTime(int h, int m)

 {

 this.hour = h;

 this.minute = m;

 }

• The word static does not appear in the method
header.

11

Instance methods

• When the word static does not appear in the
method header, this means that the method can be
called via a variable declared to be of a type matching
the class name. This is called an “instance” method.

• An instance method can make use of the variables
defined in the class.

• The result: the method will produce different
results for different object instances.

12

Instance methods

• For example,

Time time1;

Time time2;

time1 = new Time();

time2 = new Time()

time1.setTime(17, 45); // time1 is 17:45

time2.setTime(14, 30); // time2 is 14:30

13

What do we have?

time1
17

45

hour

minute

time2
14

30

hour

minute

14

this

• Objects time1 and time2 use the same code
in class Time to set their own copy of hour
and minute.

• When we want to refer to “the object on
which I was called”, we use this.

15

this

time1
17

45

hour

minute

time2
14

30

hour

minute

this

time1.setTime(17, 45);

16

Information Hiding

• If we want to ensure that:

– hour: must be in range 0  hour  23

– minute: must be in range 0  minute  59

then direct access to these variables should not be permitted.

class Time

{

 private int hour;

 private int minute;

}

• Instead, access should be provided through setTime, and we
can adjust the values if needed.

17

Revised version of setTime

 public void setTime(int h, int m)

 {

 // If minutes value is too large, adjust it

 // by mod 60, and add to hours value.

 if (m > 59)

 {

 h = h + m / 60; // determine hours to add

 m = m % 60; // puts minutes in range

 }

 else

 {

 ; // do nothing

 }

 this.hour = h % 24; // puts hours in range

 this.minute = m;

 }

18

Accessors

• With the variables now declared to be private, we
need to provide a way for other classes to ask for the
values.

 public int getHours()

 {

 return hour;

 }

 public int getMinute()

 {

 return minute;

 }

19

Compare times for equality

• Suppose we want a method that checks whether one
time object is equal to another.

• One approach: a static method

 public static boolean isEqual(Time t1, Time t2)

This would be called as Time.isEqual(t1, t2)

• Alternative: an instance method
public boolean isEqual(Time t2)

This would be called as t1.isEqual(t2)

20

The static method

public static boolean isEqual(Time t1, Time t2)

{

 return (t1.hour == t2.hour) &&

 (t1.minute == t2.minute);

}

• If the method is inside the class Time, it can access
the private variables inside the class.

• Why are there 2 parameters in the above case?

21

The instance method

public boolean isEqual(Time t2)

{

 return (this.hour == t2.hour) &&

 (this.minute == t2.minute);

}

• In this case, we are comparing “ourself” to another
Time value.

• Why is only one parameter sufficient in this case?

22

Exercise 1
• Add the following methods to the Time class:

public boolean isBefore(Time t2)

 Returns true if the time represented by this is before the
time in t2, and false otherwise
public Time duration(Time t2)

 Returns a new Time object with the number of hours and
minutes between this and t2.

• Write a main method in the class TestTime to test your new
methods (or create JUnit tests).

• If you have time, add a display method:
 public String toString()

 which allows the display of the Time object according to the
format hour:minute in a print/println (for example
System.out.println(time1);)

23

A “Line” class

• Design a Java class Line that will store information
for a line, where the line is in an (x,y) coordinate
space, and provide operations to work with lines.

• Each line object starts at a point (xStart, yStart) and
ends at a point (xEnd, yEnd), where xStart, yStart , xEnd,
and yEnd are real-valued numbers that could be
positive or negative.

(xStart, yStart)

(xEnd, yEnd) y

x

24

UML diagram for Line

25

Method descriptions

• Set the start and end points of the line.

• Name of method: setPoints(...)

• Parameters to the method: xs, ys, xe, ye

• Results: (none)

• Modified: the line object

•

• Return the length of the line

– The length is

• Name of method: length()

• Parameters to the method: none.

• Result: length of the line (a real value)

26

Method descriptions

• Translate the line by (tx, ty), where tx and ty are any
positive or negative real values.

– A translation of a line represents "sliding" the
entire line. The value tx is added to the x
coordinates of the start and end of the line, and
the value ty is added to the y coordinates of the
start and end of the line.

• Name of method: translate(...)

• Parameters to the method: tx, ty

• Results: (none)

• Modified: the line object

27

Method descriptions

• Return the slope of the line.

– The slope is (ye − ys) / (xe − xs) (watch out for
vertical lines – their slope is infinite!)

• Name of method: slope()

• Parameters to the method: none.

• Result: the slope of the line (a real value)

28

Method descriptions

• Returns a String with information about the line.

– The string that is returned for a line with (for
example) start point (0.0,1.0) and end point (3.5,-
1.2) should be:

 Line from (0.0, 1.0) to (3.5, -1.2)

– Formatting of the values to a specific number of
decimal places is not required.

• Name of method: toString ()

• Parameters to the method: (none)

• Results: a String in the above format

29

Exercise

• Implement the class Line

 - implement the toString method

 - add a printLineInfo method

• Test the class using the main method in
LineTest.java

30

